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Abstract. Systematic local density treatment (via the all-electron, full-potential, linear com- 
bination of gaussian orbitals fitting function (LCGTO-FF) algorithms) of the cohesive proper- 
ties of mono- and dilayer Li when combined with recent calculations for bulk Li of similar 
high quality, yields a prediction of modest intraplanar lattice expansion (dilayer: 2 .8%, 
monolayer: 1.6%) and substantial interplanar contraction (dilayer c /a  = 1.46 versus cal- 
culated bulk c /a  = 1.64). The differences between these predictions and the limited exper- 
imental data for Li overlayers on graphite (which exhibit about 6.1% expansion in nearest- 
neighbour separation) suggest possible substrate or bonding effects in the experiment. The 
total dilayer cohesive energy is 79.8% of the bulk cohesive energy while for the monolayer 
the fraction is 63.1%. The interplanar contribution to the dilayer cohesive energy is 
-0.29 eV.  The dilayer uniaxial (c-axis) compressibility is 2 .5  times as large as the calculated 
value for the HCP Li crystal (the latter value is in quite good agreement with available 
measurements). Mono- and dilayer energy bands (at the level of bare Kohn-Sham eigen- 
values) are basically consistent with those calculated self-consistently for the crystal using 
the same LDA model. However, calculated work function values are larger than measured 
crystalline values, by more than 0.6 eV,  for both the mono- and dilayers. 

1. Introduction 

In recent years, substantial effort has been devoted toward achieving a theoretical 
understanding of the electronic properties of ultrathin (v = 1, 2, 3, . . . atomic layers) 
metallic films for their own sake. Much of the effort (see Batraetal(l986) for references) 
has been aimed at determining whether the v-dependent variations in one-electron 
properties (e.g. the work function) predicted by jellium models (Schulte 1976, Mola and 
Vicente 1986, Vicente et a1 1989) will occur in actual v-layers. Since such quantum size 
effects (QSE) are expected to be of the order of the Fermi energy E~ or less, the well- 
known dependence of one-electron energies on lattice symmetry and parameters means 
that structure and QSE are critically related. The few studies that have treated the 
relationship (Feibelman 1983, Ho and Bohnen 1985, Ciraci and Batra 1986, Vicente et 
a1 1989) suggest, not entirely conclusively, that v-dependent structural changes tend to 
reduce but not eliminate QSE. 

Considerably less effort has been devoted to the calculation of structural properties 
of ultrathin films than to their electronic properties. Most structural studies to date are 
$ Permanent address: Quantum Theory Project, Departments of Physics and Chemistry, University of 
Florida, Gainesville, FL 32611, USA. 
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concentrated on l-layers ( i-L hereafter, Mintmire et a1 1982, Wimmer 1983a, Boettger 
and Trickey 1984, 1986b, 1989, Batra 1985) or else on modelling of solid surfaces by 
treatment of rather thick films with inversion symmetry (v = 2s f 1, s = 3, . , . , 7 
typically). Relatively little is known about 2-layer ( 2 - ~ )  structural equilibria for example. 
To our knowledge the only 2 - ~  structural equilibrium calculations reported to date are 
Feibelman’s for A1 (1983) and our own for Be (Boettger and Trickey, 1985a) and for 
graphite (Trickey et a1 1989,1990a). Those however have enough unusual and perhaps 
even counter-intuitive results to make clear that comparative study of 1-m and ~ - L S  is 
important in its own right. 

The unusual nature of some of those results is illustrated by the trends in structural 
parameters, relative to their crystalline values, to be expected from simple coordination 
number arguments (assuming no symmetry-changing reconstructions). For an unsup- 
ported metallic i-L, the absence of neighbouring layers leads to the expectation of 
reduced intraplanar separation relative to the bulk value. Addition of a second layer 
should, on the same grounds, give an intraplanar separation between those for the i-L 

and the crystal. Concurrently, the asymmetric 2 - ~  interplanar binding would be expected 
to reduce the 2-~interplanar separation somewhat from the equilibrium crystalline value. 
As layers are added, such considerations suggest a smooth increase in the intraplanar 
separation, rapidly converging to the theoretical bulk value. The interior interplanar 
separation for a relatively thick film is anticipated to be essentially identical with the 
bulk crystal value, with smaller values near the faces. We will refer to this picture as the 
‘coordination model’ for the structural parameters of ultra-thin films. 

Systematic appraisal of the existing theoretical i-L and 2 - ~  results reveals that while 
the coordination model is actually followed in many ways, there are instances of quite 
different behaviour. (Such comparisons must use calculated quantities exclusively if 
spurious bond contractions are to be avoided; see section 3 and Boettger and Trickey 
(1989).) For example, i-L A1 with either the symmetry of the bulk (100) face (Batra 1985) 
or (110) face (Feibelman 1983, Ciraci and Batra 1986, Boettger and Trickey 1986c) has 
a lattice contraction predicted to be 5-9% depending on symmetry and calculational 
details. This decrease is consistent with qualitative expectations from the coordination 
model. The graphite i-L is contracted by about 1% compared with the bulk nearest 
neighbour spacing, while the corresponding 2 - ~  parameter is unaltered from bulk 
(Trickey et a1 1989, 1990a) exactly as expected from ordinary carbon bonding and 
coordination arguments. The coordination model also holds for the interplanar sep- 
aration in the graphite 2 - ~  (a 19% decrease with respect to the calculated 
crystalline value). The model fails for the Be 2 - ~  interplanar spacing, which is expanded 
by about 2.7%, while simultaneously it succeeds for the intraplanar spacing of the same 
system which iscontracted by 3.6% (Boettger and Trickey 1985a; bulkvalues from Chou 
et a1 1983). 

The most dramatic deviation from the coordination model found thus far, however, 
is for the alkali metals, which even for the i-L (Boettger and Trickey 1989) do not conform 
to those expectations. (Note that Wimmer, 1983a, predicted bond contraction in the Cs 
I-L by comparison with experimental lattice parameters for the crystal, a problematical 
procedure as discussed below.) For these, the intraplanar separation is either the same 
as that of the bulk crystal or expanded.  The Li i-L is the extreme example: in comparison 
with the latest calculation (Trickey et a1 1990b) for HCP Li (ann = 5.66 au; see section 3), 
the Li i-L nearest neighbour spacing (ann = 5.78 au) is expanded by 2.1%. 

The question immediately arises as to how the Li 2 - ~  will behave. It is particularly 
interesting in view of what is known experimentally about Li 1-Ls on graphite. Ignatiev 
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and Fan (1986) have reported a lattice expansion of 6.1% relative to the bulk Li 
crystalline nearest neighbour spacing (we use the value tabulated by Dacorogna and 
Cohen, 1986). Their data were accompanied by speculation that perhaps Li, C2 was 
formed instead of the intended Li I-L. (They did not speculate on possible incom- 
mensurate phase formation.) On the face of it, however, their finding is in qualitative 
accord with our prediction, hence perhaps in disagreement with the bond contraction 
predicted for 1-L Cs by Wimmer (1983a). The latter remark is conditional, not only 
because of the aforementioned problem of using experimental data for the crystal but 
also because Wimmer found the bond contraction to depend sensitively on 5p states 
which, of course, are completely absent in the Li I-L. The problem of Li 1- and 2 - ~  lattice 
parameters is also of intrinsic importance in the closely related matter of understanding 
Li-graphite intercalation systems, (Samuelson and Batra 1980, Posternak et a1 1983 and 
references in both) because of the distinctive v-layer behaviour summarized at the 
outset. 

To address these issues systematically, we have calculated the cohesive and one- 
electron properties of Li 1- and 2-LS in a way which enables direct comparison with recent 
high-precision calculations for crystalline Li. In order, the remaining sections summarize 
methodology, present the total energies, equilibrium lattice parameters, cohesive ener- 
gies, uniaxial compressibilities and universal scaling lengths, and conclude with elec- 
tronic structure (at the level of Kohn-Sham eigenvalues). As noted, we have treated the 
cohesive properties of the Li 1-L previously (Boettger and Trickey 1986b, 1989). Though 
calculated with earlier versions of the codes used, all those results are consistent with 
the present findings. 

2. Methodology 

The customary local density approximation (LDA) to density functional theory (DFT) is 
implemented entirely as a first principles methodology by (a) inclusion of all electrons, 
(b) retention of the full potential (no ‘shape’ approximations), and (c) full self-con- 
sistency at every set of lattice parameters. These characteristics are achieved by solution 
of the Kohn-Sham (KS) equations with linear combination of Gaussian-type functions, 
fitting-function (LCGTO-FF) techniques (Mintmire et a1 1982) as embodied in the FILMS 
program package (Boettger and Trickey 1986b, 1989). The Hedin-Lundqvist (HL) form 
of LDA was used throughout. 

In LCGTO-FF the KS orbitals are expanded in the first of three Gaussian basis sets (the 
‘KS’ basis). The two additional basis sets are to expand the electron number density (‘Q’ 

basis) and similarly, the LDA exchange-correlation kernels (‘xc’ basis). (Cartesian 
Gaussians of proper atomic-like symmetry are formed by contraction of the Hermite 
Gaussians used for analytical calculation of matrix elements.) 

To assure stable, reliable results for both the 1- and ~ - L s ,  we tested several bases. The 
s-submanifold of the KS basis which resulted was obtained from the van Duineveldt 
(1971) 9sLi basis by contracting the five tightestmembersof thelatter usingascoefficients 
the atomic Li 1s orbital expansion coefficients determined by van Duineveldt. The KS p- 
submanifold is comprised of a 2-Gaussian contraction obtained from the two most 
compact functions and their coefficients as given by Dunning and Hay (1977) combined 
with a diffuse Gaussian (exponent = 0.14) suitable for crystalline-like environment. An 
additional diffuse pz function was added (exponent = 0.06) to ensure a good description 
of the vacuum region. The resulting (9s3p+1p,/5s2p+lpz) basis is shown in table 1. 
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Table 1. Basis set exponents and KS basis contraction coefficients. 

KS functions-xponents KS functions-contraction coefficient 

s-type 

1359.446 60 
204.026 470 

46.549 541 0 
13.232 594 0 
4.286 148 00 
1.495 542 00 
0.542 238 00 
0.073 968 00 
0.028 095 00 

P-tYPe 
1.488 000 00 
0.266 700 00 
0.14000000 
0.060 000 00 

0.000 844 
0.006 485 
0.032 466 
0.117 376 
0.294 333 
1.000 000 
1.000 000 
1.000 000 
1.000 000 

0.038 770 
0.236 257 
1.000 000 
1.000 000 ( p2 only) 

Q and xc Basis function exponents 

s-type 

2718.893 20 
408.052 940 

93.099 082 0 
26.465 188 0 

8.572 296 00 
2.991 084 00 
1.200 000 00 
0.550 000 00 
0.240 000 00 
0.120 000 00 
0.060 000 00 

d-iype 

2.000 000 00 
0.660 000 00 
0.300 000 00 
0.120 000 00 
0.060 000 00 

P:-tYPe 
0.800 000 00 
0.320 000 00 
0.140 000 00 
0.060 000 00 

The Q and xc bases were chosen to be identical: lls5d for the 1-L and enriched for 
the 2 - ~  by adding four pz functions to describe the asymmetric environment of each atom. 
The fit basis used for both Q and xc is also shown in table 1. 

Among several refinements made in FILMS recently the introduction of linear triangle 
Brillouin zone (BZ) integration is the most noteworthy. The specific implementation is 
summarized in the Appendix. It is to be noted that, to ensure stability and precision over 
a quite substantial range of lattice parameters, we used a much denser mesh of points 
(37versus 19 points in the irreducible wedge) for sums over the two-dimensional B z  than 
in our previous Li 1-L work. 

All calculations were stabilized to an iteration-to-iteration shift in total energy of less 
than 1 pH (1H = 27.2117 eV). 

3. Lattice parameters, cohesive energies, uniaxial compressibility and universal scaling 

Although the T = 0 K,  P = 0 kbar phase of Li is widely accepted to be close-packed, the 
specific phase is still subject to uncertainty (Gooding and Krumhansl 1988). Because 
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Table 2. Comparison of calculated and measured Li lattice parameters. 
~~ ~ 

System a (au) c (au) c /a  

2 . ~  (present) 5.81 8.50 1.46 
1-L (present) 5.74 
1-LA 5.78 
HCP crystalb 5.65 9.28 1.644 
HCP crystalc 5.77 9.41 1.63 
i-L, exptd 6.24 
HCP crystal, expt.' 5.88 9.62 1.637 
Liz molecule, expt.' 5.049 
Liz molecule, ca1c.R 5.182 

Li, deformed FCC segmenth 5.820 
Li, deformed FCC segmenth 5.927 

- - 
- - 

- - 

- - 
- - 
- - Li, ring? 5.599 
- - 
- - 

~ 

* Boettger and Trickey (1989). 

' Dacorogna and Cohen (1986). 

e Barrett (1956). 
Herzberg (1950). 

E Forner and See1 (1987). 
Boustani etal(1987). 

Trickey et a1 (1990b). 

Ignatiev and Fan (1986). 

of calculational difficulties intrinsic to very small inter-phase energy differences, modern 
LDA calculations have been restricted to phase-stability comparisons among HCP, FCC and 
BCC. A recent first principles, full-potential, all-electron LDA calculation on crystalline Li 
(Trickey et a1 1990b) finds HCP as preferred among those three as the ground-state phase, 
in confirmation of earlier pseudopotential (Dacorogna and Cohen 1986) and LMTO 
(Boettger and Albers 1989) determinations. We therefore assume HCP ordering for the 
reference crystal. 

The coordination model (as well as calculational experience) then motivates the 
choice of the Li 1- and ~ - L S  as hexagonally ordered. The unit cell parameters are a and c, 
with c/2 = d the interplanar separation. Since our previous calculations show that the I- 
L cohesive energy is roughly two-thirds the bulk cohesive energy, the appropriate energy 
minimization strategy is to optimize the I-L total LDA energy E,,, with respect to a, then 
the 2 - ~  E,,, with respect to c at that optimum 1-L a, then reoptimize both a and c in the 2- 
L. The last step turns out to be almost unnecessary. 

Calculated lattice parameters are in table 2, along with calculated and measured 
results for crystalline Li, the Liz molecule, and some small Li, clusters. To reiterate, 
except where noted, all comparisons with crystalline lattice parameters are with respect 
to calculated values. This is essential if actual lattice contraction is to be distinguished 
from the systematic contraction with respect to experimental values for a given phase 
that is a well-known deficiency of current LDA models (see Jansen et a1 1984, Boettger 
and Trickey 1985b, Blaha and Schwarz 1987). 

A striking result of this calculation is the substantially smaller (11.0%) c /a  for the 
2 - ~  than the crystal, 1.46 and 1.64 respectively. (This comparison is with respect to the 
Trickey et a1 (1990b) results and not those of Dacorogna and Cohen (1986) in order to 
base the comparison on an all-electron calculation using the same choice of LDA model.) 
A second striking result is that intraplanar lattice expansion with respect to bulk is 
predicted for both the I-L (5.74 versus 5.65 au or 1.6%) and the 2 - ~  (5.81 versus 5.65 au 
or 2.8%). This behaviour is precisely the reverse of that found in 2 - ~  Be (Boettger and 
Trickey 1985a) and discussed in section 1. 

The only available experimental data (Ignatiev and Fan 1986) on Li nearest neigh- 
bour distances in ultra-thin films are for what were intended to be Li on graphite 
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Figure 1. Cohesive energy for the Li 1-L as a func- 
tion of a. 
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Figure 2. Cohesive energy for the Li 2 - ~  as a func- 
tion of a. 
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Figure 3. Cohesive energy for the Li 2 . ~  as a func- 
tion of interplanar separation d. 

Figure4. Dissociationofthe Li I-Lto theseparated 
atom limit. 

substrates. If the authors’ expressed reservations are ignored, the reported experimental 
value for Li 1-L lattice expansion is 6.1%. Thus, although the HL LDA gives a somewhat 
contracted set of lattice parameters in all phases (note calculated versus measured 
values for the crystal in table 2 for example), the measured and calculated trends agree 
qualitatively. Both predict moderate expansion in a,,,,. Quantitatively, the calculated 
values are much smaller, 1.6% and 2.8% (v = 1 , 2  respectively). 

The 1- and 2-L a-values also may be compared with bond lengths in the Liz molecule 
and in Li,, clusters. For example, the experimental Liz bond length is 5.049 au (Herzberg 
1950). The CCSD calculation by Forner and See1 (1987) finds 5.182 au for Li2 and 5.599 au 
for the interatomic spacing in the Li6 ring. Thus the absence of a central atom in the 
planar Li, ring causes substantial bond contraction relative to both the Li 1-L and the 
crystal. Hartree-Fock plus CI calculations carried out by Boustani et a1 (1987) on a wide 
variety of Li, clusters show planar geometries preferred for n I 6. In the present context 
those planar geometries can be understood as weakly deformed segments of the 1-L. 
However, both the Lis and Li6 planar clusters have bond lengths greater than that of the 
Li 1-L: 5.82 au for Li,, 5.93 au (average) for Li,, 5.74 au for the 1-L. Since CI calculations 
do not have the LDA bond contraction problem mentioned just above, direct comparison 
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.LO5 
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Figure 5.  Dissociation of the Li 2-L to the isolated 
1-L limit. 

of these cluster bond lengths with the experimental value of the crystalline bond length 
is justified. That comparison supports the hypothesis of lattice expansion in the 1-L 
compared to the crystal. 

The cohesive energies E,  and interplanar binding energies Ei are tabulated in table 
3. These are referenced to the proper atomic energies, to wit, the LSDA values from the 
HL exchange-correlation kernels. The 2 - ~  E ,  = - 1.38 eV/atom is 79.8% of the bulk E,  
while the 1-L E,  = - 1.09 eV/atom is only 63.1%. The interplanar contribution to the 2 - ~  
cohesive energy is -0.29 eV. Although this interplanar binding is the same order of 
magnitude as found in the Be 2 - ~  case (Boettger and Trickey 1985a), it is a much larger 
fraction of the cohesive energy than in that case (21% versus 11%). Consistent with 
their smallness, the Li, clusters are bound by less than 60% of even the 1-L cohesive 
energy. 

Figure 1 shows the 1-L E,(a) together with a quadratic fit to those data. The quality 
of the fit is very good (RMS deviation = 0.000 24 eV) and illustrates the harmonic nature 
of the binding curve near equilibrium. Similarly, figure 2 shows the same quantities for 
the 2 - ~ ,  with the harmonic character of the a-axis binding again clearly evident (RMS 
deviation = 0.00014 eV). In contrast the 2 - ~  E, as a function of interplanar separation 
(see figure 3) is highly anharmonic. Here we located the minimum of E,(d) with a cubic 
fit to the ten calculated points nearest the minimum (RMS deviation = 0.0014 eV). That 
fit is shown in figure 3, along with a quadratic (the best fit to the points below cmin alone), 
to illustrate the severe asymmetry of the interplanar binding energy with separation. 

The anharmonicity in E,(d) will have an important consequence for the physical 
behaviour of the Li 2 - ~ ,  namely a strong temperature dependence for the interplanar 
separation. For example, an energy 300 K above the E,(d) minimum gives the midpoint 
of the classical turning points at d = 4.35 au. Thus a room temperature c/a in excess of 
1.50, as compared to the T = 0 K value of 1.464, is not improbable. Of course these are 
rough static lattice arguments but they illustrate the way in which the lattice dynamics 
of the Li 2 - ~  will be highly anharmonic and anisotropic and the significant temperature 
dependence which must accompany those characteristics. 

Figures 4 and 5 give the dissociation curves for the I-L into atoms and the 2 - ~  into two 
1-Ls. For the 1-L, the paramagnetic atomic limit (the v-layers are not spin-polarized) is 
achieved by a separation of about 20au. More importantly, the 2 - ~  has essentially 
achieved its separated I-L limit by an interplanar separation of about 12 au. This latter 
result suggests that for a Li 4- or 5 - ~  system, the two surface layers should be effectively 
decoupled. Thus, we might expect the surface properties of a thin film of Li to have 
converged to their limiting values for v = 5. 
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Table 3. Calculated and experimental Li cohesive energies E, and interplanar binding 
energies E, (ail in eV/atom). 

System E, E ,  

2 . ~  (present) -1.38 -0.29 
I-L (present) -1.09 - 

-1.11 - 
I.Lb -1.01 - 
Crystal' -1.73 - 
Crystal, expt.d -1.66 - 

Li6 ring' -0.46 - 
Lis deformed FCC segment' -0.56 - 
Li, deformed FCC segment' -0.63 - 

Li, e. t .g  -0.53, -0.35, -0.24 - 

a Boettger and Trickey (1989). 
Wimmer (1983b); note that this is at the experimental crystalline value of an,,. 
Trickey et a1 (1990b). 
Anderson and Swenson (1985). 

Forner and See1 (1987). 
e Wiikinson (1963). 

E Boustani et a1 (1987). 

Table 4. Uniaxial compressibility, k , ,  in units of cm2 dyn-'. 

System k ,  

2 . ~  (present) 4.57 
HCP crystal" 1.81 
HCP crystal, expt.h 1.76 

Dacorogna and Cohen (1986). 
Anderson and Swenson (1985). 

The c-axis uniaxial compressibility (for two atoms per cell) is determined by the 
equilibrium value of the energy second derivative as 

kc = ( A  o l d m i n  )(a 'Eclad' I min 1 - ' 
with A,  the basal plane area in the unit cell and dmin the value of d (= c/2) at the calculated 
equilibrium configuration. For the HCP crystal, the elastic constant c33 is (Seitz 1940) 

c33 = l / k c .  

The cubic fit around the minimum of E,(c) cited above gives 
a2E,/ad21min = 0.14 eV au-2 for the 2 - ~ .  Calculated and measured values of k,  for 
compression along c are displayed in table 4. The Li 2 - ~  is some 2.5 times more com- 
pressible along that axis than the bulk crystal. 

This behaviour is a dramatic yet unsurprising contrast with, for example, 2 - ~  graphite 
(Trickey et a1 1990a). In the Li 2 - ~ ,  the HCP symmetry means that every atom is at an 
open site with respect to the other plane. Graphite on the other hand has two atoms out 
of the four in its parallelogram unit cell which are overhead to one other. (These are the 
atoms at the vertices of the parallelogram.) The coordination model therefore suggests 
that at sufficiently small values of d the compressibility in graphite ~ - L S  should be reduced 
relative to the bulk crystal value while that for the Li 2 - ~  will be increased. 
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Figure 6. Li 1-L energy bands and density of states (states eV-'latom). 
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Figure 7. Li 2 . ~  energy bands and density of states (states eV-'/atom) 

The effect is accentuated by the fact that the Li 2 - ~  is deficient with respect to 
its metallic bulk counterpart in terms of the volume of electron liquid available for 
compression along the d direction. Graphite bonding is, in contrast, of molecular crystal 
character in both the 2 - ~  and bulk. This, coupled with shrinkage of the &parameter in 
both ~ - L s ,  argues for increased compressibility, i.e. a softer system, for the Li 2 - ~  relative 
to the crystal and the converse for a 2 - ~  like graphite, exactly as is found. 

Two of us (Boettger and Trickey 1989) have treated the relationship between Ei and 
k, elsewhere. The central quantity is the scale length Li for the interplanar energy, which 
appears in the empirically discerned universal equation of state (Rose et a1 1983, Vinet 
et a1 1989, Boettger and Trickey 1989). Here Li is given by 

Li = [2Ei/(a2E,/ad21min)]112 

with the factor of 2 in the numerator to accord with the definition of L,, the surface- 
surface scaling length, used by Rose er al. For the 2 - ~ ,  Li = 2.04 au as compared with 
Ls = 1.95 au and the bulk scaling length LB = 1.04 au obtained empirically by Rose et 
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Table 5. Work function @(= - E ~ ) ,  density of states at E ~ ,  and total occupied bandwidth W 
(from Kohn-Sham energy bands) as calculated, with corresponding experimental values 
where available. 

N E F )  
System @ (eV) (states eV/atom) W ( e v )  

2 . ~  (present) 3.58 0.56 3.2 

l-La 3.53 0.56 2.17 
BCC crystalb - 0.48 3.6 
BCC crystalc - 0.49 3.8 

I-L (present) 3.53 0.50 2.2 

HCP crystal, expt.d 2.90 - - 

* Wimmer (1983b); note that this is at the experimental crystalline value of ann. 
Moruzzi era1 (1977). 
Papaconstantopoulos (1986). 
Michaelson (1977). 

al.  A purely theoretical value of LB is 1.14 au (Trickey et a1 1990b). If the empirical Ls 
is scaled by the ratio of these two LBs (theoretical to empirical) the predicted result is 
Ls = 2.19 au. Together these results suggest that the upper layers of a cleaved Li surface 
will behave in compression rather like the Li 2 - ~ .  

As expected, the intraplanar second derivatives are much stiffer. In the 1-L, the 
intraplanar derivative is the only compressibility. From the quadratic fits mentioned 
previously, the values of a2E,/aa2 l m l n  for the 1-L and 2-L respectively are 0.43 eV au-* 
and 0.32 eV au-*. As can be seen from figures 1-5, the energetics of compression along 
the a-axis are almost completely independent of c-axis compression. An excellent 
approximation for calculation of the a-axis scale length 

therefore is to choose 

that is, in the 2 - ~  one-half of the interplanar binding energy is removed for each plane. 
The values of L, are then 1.59 au and 1.96 au for the 1-L and 2 - ~  respectively, whence it 
is apparent that the 2 - ~  binding is quite isotropic and rather different from that of bulk 
Li (recall the calculated LB = 1.14 au). 

4. KohnSham energy bands and densities of states 

With the usual caveats about LDA eigenvalues as non-rigorous estimators of spec- 
troscopic energies, we show the Kohn-Sham energy bands and densities of states (DOS) 
for the I- and ~ - L S  in figures 6 and 7 respectively. The symmetry labels for the two- 
dimensional Brillouin zone follow the conventions given by Terzibaschian and Enderlein 
(1986). Comparison with the bulk BCC (Moruzzi et a1 1978), FCC (Boettger and Trickey 
198Sb), and HCP (Trickey et a1 1990b) energy bands shows no surprising differences in 
light of the differing symmetries and LDA models involved. Wimmer’s 1-L energy bands 
(which were calculated at experimentally determined lattice parameters for the crystal) 
likewise differ little from the present results. 

We summarize the key features of the Kohn-Sham bands in table 5 .  The most 
remarkable result is the consistent disparity, over 20%, between all calculated values of 
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the work function, Q and the measured value (Michaelson 1977). Various jellium 
estimates (rs = 3.28 au) give Q = 3.25 eV (Langand Kohn 1971), 3.4-3.7 eV (Alldredge 
and Kleinman 1974) 2.21 eV (Sahni and Ma 1980), and 3.22 eV (Perdew and Wang 
1988). The Sahni and Ma treatment is HF, while the rest are LDA. The LDA jellium 
predictions agree well with the present values of 3.53 eV (I-L) and 3.58 eV (2 -~ ) .  All 
disagree with the measured value by at least 10%. 

The experimental data reviewed by Michaelson were already about a decade old at 
that time. In an appendix, Michaelson remarks on the wide variation of those original 
data. By now it is reasonably clear that remeasurement of the Li work function isneeded. 
We note that the variation of Q between 1- and ~ - L S  may signal a weak quantum size 
effect (Feibelman and Hamann 1984); until we have completed a systematic study of the 
3 - ~  and 4 - ~  (a computationally challenging task) this speculation must remain untested. 

Turning to the density of states, we note that the I-L valence DOS has a single low- 
energy step function while the 2 - ~  DOS has two such steps. These are the expected 
signatures of the one and two occupied parabolic valence bands respectively. Com- 
parison with the parabolic valence DOS of the solid (e.g. Moruzzi et a1 1978) shows that 
at least in this respect the 2 - ~  is a long way from resembling the crystal. Details of the 
evolution of the v-layer DOS to that for the bulk solid remain to be elucidated. 

5. Conclusions 

Li 1- and ~ - L S  are predicted to have non-trivial intraplanar lattice expansion. This pre- 
diction is at least qualitatively in accord with the quite limited experimental data, but in 
contradiction with the result predicted for Cs. If taken literally, the experimentally 
determined 1-L intraplanar expansion atop graphite is sufficiently larger than the theor- 
etical prediction for the isolated 1-L to suggest significant substrate effects. 

The Li 2 - ~  is predicted to exhibit substantial interplanar lattice contraction as well. 
The interplanar binding energy curve is strongly anharmonic, with the result that the 
actual spacing of a Li 2 - ~  system will be strongly temperature dependent. 

Finally, the consistent disparity of all calculations of the Li work function with respect 
to the rather old experimental value makes clear the need for remeasurement. 
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Appendix 

The current version of the FILMS program package is one which has undergone substantial 
refinement in the past year to attain both speed and precision improvements in multilayer 
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Figure 8. BZ scan for irreducible wedge. 

calculations. Details of those algorithmic developments will be presented elsewhere. In 
the context of the present results, one significant improvement to the method for 
performing Brillouin zone integrals, must be summarized here. For the BZ integrals 
there are two changes with respect to previous versions of FILMS. 

The simpler change is to use a 37-point mesh rather than the 19-point one used 
before. More significantly, all BZ integrals now are evaluated with the linear triangle 
method (Wang and Freeman 1979). As in our previous work on hexagonal films, the 
new BZ integration mesh is of explicit hexagonal symmetry. A diagram of the triangular 
division of the irreducible wedge of the first BZ is shown in figure 8. Note that in order 
to achieve certain desirable properties (see below) the triangles must in some cases 
extend beyond the boundaries of the irreducible wedge. 

Two major advantages arise from utilizing the BZ mesh and triangular partitioning 
of figure 8. First, the resulting linear triangle integration will not exhibit the potential 
problems with linear integration schemes first noted by Kleinman (1983) in the context 
of the analogous three-dimensional technique, linear tetrahedral integration. He  
showed that the misweighting of k-points in standard applications of the linear tetra- 
hedral schemes results in very slow convergence of the values of integrals as the number 
of points in the BZ scan is increased. Jepsen and Anderson (1984) followed up by pointing 
out that the key problem is that for a uniformly distributed mesh of points in the BZ, it 
is possible (in fact, common) for the linear scheme to result in a non-uniform weighting 
of those points. They used a two-dimensional example for which they showed that a 
simple rearrangement of the division into triangles eliminates that particular difficulty. 

In general, the linear triangular scheme will work best if the BZ points exhibit the 
symmetry of the reciprocal space lattice, the weight of a given point for a filled band is 
equal to its star weight, and the triangles themselves exhibit the symmetry of the lattice. 
The scheme implemented in FILMS meets these requirements; see figure 8. Specifically, 
integration of a filled band will reduce to a simple histogram integration using standard 
star weights for the mesh points. The new scan also incorporates the inversion symmetry 
of the MK axis automatically. This inclusion yields a density of states curve which clearly 
exhibits the structure appropriate to the band flattening at the zone boundaries (recall 
figures 6 and 7), whereas the earlier scheme was not guaranteed to do so. 
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